Eliminasi Gauss-Jordan untuk Invers Matrix dengan Java

Terkait dengan posting sebelumnya tentang algorithma eliminasi Gauss-Jordan, penulis mencoba mengimplementasikannya dengan bahasa pemrograman Java.

Untuk tahapan pembuatannya dapat dilihat pada video di bawah ini:



Sedangkan kode Java-nya adalah sebagaimana berikut:

package tutorialjava;
import java.text.DecimalFormat;
import java.util.Random;
/**
* @author Edugameapp
*/
public class TutorialJava
{
private double[][] A=new double[][]{
{0,-3,-2},
{1,-4,-2}, {-3,4,1}
};
private double[][] B;
public boolean cekDiagonal(int a)
{
if(a>10*A.length)return false;
for(int i=0;i<A.length;i++){
if(A[i][i]==0){
Random rand=new Random();
int k=(i+rand.nextInt(A.length))%A.length;
for(int j=0;j<A[0].length;j++){
double tmp=A[i][j];
A[i][j]=A[k][j];
A[k][j]=tmp;
B[i][j]=B[k][j];
tmp=B[i][j]; B[k][j]=tmp;
}
} return cekDiagonal(a+1); }
return true;
}
public void calculate()
{
B=new double[A.length][A[0].length];
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
if(i==j)B[i][j]=1.0;
else B[i][j]=0.0;
} }
cekDiagonal(0);
for(int k=0;k<A.length;k++){
double p=A[k][k];
if(p==0){
System.out.println("Cannot do calculation!");
return;
}
for(int j=0;j<A[0].length;j++){
A[k][j]/=p;
}
for(int i=k+1;i<A.length;i++){
p=A[i][k];
for(int j=0;j<A[0].length;j++){
A[i][j]-=A[k][j]*p;
B[i][j]-=B[k][j]*p;
}
} }
for(int k=A.length-1;k>=0;k--){
for(int i=k-1;i>=0;i--){
double p=A[i][k];
for(int j=A.length-1;j>=0;j--){
A[i][j]-=A[k][j]*p;
B[i][j]-=B[k][j]*p;
}
} }
DecimalFormat decimal=new DecimalFormat("0.0");
System.out.println("A=");
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
System.out.print(decimal.format(A[i][j])+" ");
}
System.out.println();
}
System.out.println("B=");
System.out.println();
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
System.out.print(decimal.format(B[i][j])+" ");
}
System.out.println();
} }
public static void main(String[] args) {
TutorialJava main=new TutorialJava();
main.calculate();
}
}

Komentar

  1. Pak, ini bisa langsung dipakai untuk matrik nxn yg besar g misal 19x19 ato lebih besar lagi?

    BalasHapus
  2. pak, saya coba cek dengan fungsi minverse di excel kok beda yah hasil invers nya?

    BalasHapus
    Balasan
    1. Hasil inverse matrix memang tidak cuma satu. Bisa berbeda. Yang penting jika dikalikan antara matrix asal dengan inverse-nya, hasilnya matrix identitas.

      Hapus

Posting Komentar



Postingan populer dari blog ini

Apps Script untuk Cetak Sertifikat

Menambahkan Konfirmasi Email di Google Form

Template Gratis App Android Sederhana dengan Admob, Firebase dan In-app Purchase

Peringatan: Aksi Penipuan Skimming Melalui Aplikasi Android M-Pajak

Jasa Penjadwalan Semester, UTS dan UAS Perguruan Tinggi menggunakan Google Sheet

Menambahkan Random Key sebagai ID Pembeda di Google Sheet dengan Apps Script

Menyembunyikan Failed Load Images di Blogger

Menghapus Baris di Google Sheets yang Memiliki Sel Kosong dengan Apps Script

Menyikapi Ucapan AI Pejabat

Apps Script untuk Mengirimkan Notifikasi Approval