Eliminasi Gauss-Jordan untuk Invers Matrix dengan Java

Terkait dengan posting sebelumnya tentang algorithma eliminasi Gauss-Jordan, penulis mencoba mengimplementasikannya dengan bahasa pemrograman Java.

Untuk tahapan pembuatannya dapat dilihat pada video di bawah ini:



Sedangkan kode Java-nya adalah sebagaimana berikut:

package tutorialjava;
import java.text.DecimalFormat;
import java.util.Random;
/**
* @author Edugameapp
*/
public class TutorialJava
{
private double[][] A=new double[][]{
{0,-3,-2},
{1,-4,-2}, {-3,4,1}
};
private double[][] B;
public boolean cekDiagonal(int a)
{
if(a>10*A.length)return false;
for(int i=0;i<A.length;i++){
if(A[i][i]==0){
Random rand=new Random();
int k=(i+rand.nextInt(A.length))%A.length;
for(int j=0;j<A[0].length;j++){
double tmp=A[i][j];
A[i][j]=A[k][j];
A[k][j]=tmp;
B[i][j]=B[k][j];
tmp=B[i][j]; B[k][j]=tmp;
}
} return cekDiagonal(a+1); }
return true;
}
public void calculate()
{
B=new double[A.length][A[0].length];
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
if(i==j)B[i][j]=1.0;
else B[i][j]=0.0;
} }
cekDiagonal(0);
for(int k=0;k<A.length;k++){
double p=A[k][k];
if(p==0){
System.out.println("Cannot do calculation!");
return;
}
for(int j=0;j<A[0].length;j++){
A[k][j]/=p;
}
for(int i=k+1;i<A.length;i++){
p=A[i][k];
for(int j=0;j<A[0].length;j++){
A[i][j]-=A[k][j]*p;
B[i][j]-=B[k][j]*p;
}
} }
for(int k=A.length-1;k>=0;k--){
for(int i=k-1;i>=0;i--){
double p=A[i][k];
for(int j=A.length-1;j>=0;j--){
A[i][j]-=A[k][j]*p;
B[i][j]-=B[k][j]*p;
}
} }
DecimalFormat decimal=new DecimalFormat("0.0");
System.out.println("A=");
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
System.out.print(decimal.format(A[i][j])+" ");
}
System.out.println();
}
System.out.println("B=");
System.out.println();
for(int i=0;i<B.length;i++){
for(int j=0;j<B[0].length;j++){
System.out.print(decimal.format(B[i][j])+" ");
}
System.out.println();
} }
public static void main(String[] args) {
TutorialJava main=new TutorialJava();
main.calculate();
}
}

Komentar

  1. Pak, ini bisa langsung dipakai untuk matrik nxn yg besar g misal 19x19 ato lebih besar lagi?

    BalasHapus
  2. pak, saya coba cek dengan fungsi minverse di excel kok beda yah hasil invers nya?

    BalasHapus
    Balasan
    1. Hasil inverse matrix memang tidak cuma satu. Bisa berbeda. Yang penting jika dikalikan antara matrix asal dengan inverse-nya, hasilnya matrix identitas.

      Hapus

Posting Komentar



Postingan populer dari blog ini

Algorithma FPB dan KPK dengan Javascript

Menampilkan Undetermined Circle Progressbar di Java

Genetics Algorithm Method with Progressive Error Prediction

Apps Script untuk Cetak Sertifikat

Kode Java Membandingkan Dua File

Cara Menentukan Arah Kiblat Menggunakan Google Maps

Peringatan: Aksi Penipuan Skimming Melalui Aplikasi Android M-Pajak

Menghapus Baris di Google Sheets yang Memiliki Sel Kosong dengan Apps Script

Tutorial Upload File ke Google Drive dari Website